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A nearest-neighbor gradient dynamics of one-dimensional infinite particle 
systems is considered; the model admits a two-parameter family of stationary 
configurations. Some domains of attraction of stationary configurations are 
described, and the continuum (hydrodynamical) limit of the system is 
investigated. It is shown that the mean density of points satisfies a nonlinear 
diffusion equation in the hydrodynamical limit. 
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1. INTRODUCTION 

We are going to investigate the following gradient dynamics of infinite point 
systems on the real line ~. Configurations of the system will be represented 
as real sequences co = (co~)k~Z indexed by the set Z of integers, i.e., co C ~z. 
The evolution law is given by the infinite system 

(JJk---- Ut(o')k+ 1 - - O k ) - -  Ut(o)k--( 'Ok-1) ,  k ~  Z (1.1) 

of ordinary differential equations, where cO k = dcok/dt, and U' denotes the 
derivative of a strictly convex U: ~ --, ~. The evolution of the distances 3 k = 
6k(CO) = COk+l -- COk iS governed by 

(~k = Ul((~k+l) 2[- Ut((~k-1) --  2U' (3k) ,  k C Z (1.2) 

Notice that this evolution law does depend on the enumeration of the 
particles; we are assuming that COk+ 1 > COk for all k C Z, at least at the initial 
moment t = 0 .  Since U' is strictly increasing, 6k(t)=O and 3k_l( t )>O, 
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Ok+l(t) > 0 imply that ~k(t)> 0, therefore O9k+1(0 ) > Wk(O ) for all k E Z 
results in Ogk+~(t ) > Ogk(t ) for all t > 0 and k E Z. This means that (1.1) can 
really be interpreted as an evolution law for point systems on the line. 

Gradient systems like (1.1) have been proposed by Spitzer ~1) as traffic 
models; cf. Ref. 5 with some further references. From a general mathematical 
point of view, (1.1) seems to be the simplest but not explicitly solvable 
continuous model which exhibits a hydrodynamical behavior; the barycenter 
and the density of the particles are the related conserved quantities�9 Let us 
remark that gradient dynamics of one-dimensional point systems reduces to 
(1.1) in the following situation. Consider the system 

ch k = - ~ V'(o9 k - wj), k C Z (1.3) 
j c k  

with a symmetric pair potential V of finite range, and suppose that V = U on 
an interval [a, b] such that 2a is larger than the radius of interaction of V. 
Since the property [6kE [ a , b ] : k C Z ]  is preserved by (1.3), and only 
nearest neighbors can interact in this case, we see that solutions to (1.3) and 
to (1.1) coincide if 6k(O ) E [a, b] for all k C Z. In this sense (1.1) describes 
some small fluctuations around the ground states of V. There is a hope that 
methods developed for the study of (1.1) can be applied to the related 
stochastic gradient systems, as well. 

Perhaps the most transparent feature of (1.1) is the presence of a two- 
parameter family of stationary points O(z, w) = (z + kw)k~ z, z, w E [~. 
Stationary measures of the system are concentrated on the set of such 
equally spaced configurations; see Refs. 4 and 5. The main purpose of this 
paper is to investigate the asymptotic behavior of solutions in such situations 
when the initial distribution is not translation invariant. In the next section 
some domains of attraction will be specified in terms of certain quadratic 
fluctuations around the stationary points. The basic result of this kind 
establishes that for initial configurations satisfying 

s u p r  -a ~ (o k - w  o - k w ) z  < +m (1.4) 
r ~ l  k - r  

with 2 < 3, for each k E Z we have ~k(t) ~ W as t ~  +c~. Of course, given ~o 
one can find at most one w satisfying (1.4) with 2 < 3. I f  the initial fluc- 
tuations are so small that 2 < 3 in (1.4) then asymptotics of solutions is 
essentially the same as that we have for the best linear approximation 

�9 a 2Uk), k E Z (1.5) 
uk = 5 -  (uk_ l  + u~+l  - 
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where a = 2U"(w)o As the level of initial fluctuations exceeds the critical 
value 2 = 3, a more complex behavior begins to develop; an intuitive picture 
can be obtained in the hydrodynamical (continuum) limit only. 

Since (1.1) is a diffusive gradient system (see Ref. 14), the appropriate 
rescaling of space and time should be given by the rule x ~ x / h ,  t ~  t/h 2, 
where the scaling parameter h > 0 gives the order of the typical distance of 
consecutive points. More exactly, the hydrodynamical rescaling of the 
number of particles means the following. Let ~0 denote a smooth function 
with a compact support, and introduce the rescaled counting functional 

Nh(t, ~o) = h ~ q)(hco~(t/h2)) (1.6) 
k ~ Z  

In Section 3 the family ~th, h > 0 of initial distributions will be prescribed in 
such a way that 

f 
+oo 

lira Nh(t , (p) = (o(y) p(t, y) dy (1.7) 
h ---,O - o o  

in probability for all continuous q) with compact support, and for each t >/0. 
The limiting density p = p(t, y) will be identified as the weak solution to the 
nonlinear diffusion equation fi = -(U'(1/p))",  where and ' denote temporal 
and spatial derivatives, respectively. Since lip has appeared on the right of 
the limiting equation, we need conditions ensuring boundedness of p(0, y) 
and of l/p(0, y), as well. A similar diffusion equation was obtained by 
Rost (8) in the case of independent diffusions of hard rods on the line. 

In the first part of the study of the hydrodynamical limit described 
above, (1.1) and (1.2) will be considered as lattice models, i.e., o k will be 
interpreted as an unbounded spin variable at site k C Z. The related rescaled 
quantities read as Zh(t,x)=COtx/hl(t/h 2) and Wh(t,X)=C~/hl(t/h2), where 
[u] denotes the integer part of u E ~. In this picture the scaling parameter h 
is just the macroscopic distance of neighboring lattice sites. It is plain that 
(1.1) and (1.2) are lattice approximations to the partial differential equations 
i =  U"(O)z", and to rb=(U"(w) w')', respectively. The lattice approx- 
imation picture is very convenient; convergence of these continuum limit 
procedures will be proven by means of a method of Liapunov functions. 
Actually, we can prove convergence in a scale of Hilbert norms, whence 
(1.7) follows by means of an a priori bound for the number of particles. 
Quite recently E. Scacciatelli ~15~ has shown that W h converges also in the 
space of continuous functions. This strong form of the local equilibrium is 
obtained by means of the representation of solutions of (1.2) in terms of the 
associated inhomogeneous random walk on Z. 

822/38/3-4-13 
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The main results of  this paper are formulated in the following two 
sections, proofs and some more detailed statements are presented in the rest 
of  the paper. I wish to express my thanks to E. Presutti and to E. Scacciatelli 
for useful discussions and remarks.  

2. LOCAL STABILITY OF SOLUTIONS 

Throughout  this paper  we are assuming that  U is twice continuously 
differentiable, and 

0 < e<~ U"(x)<~ 1/c < + ~  (2.1) 

for all x ~ ~.  In some cases the uniform Lipschitz condition 

I U"(x) -- U"(y)l ~ C .  Ix - Yl (2.2) 

will be needed, too. Since the t ransformat ion U(x) ~ U(x) - U(O) - x .  U'(O) 
does not change (1.1), we may  (and do) assume that  U(0) = U ' (0)  = 0. Since 
the right-hand side of  (1.1) is uniformly Lipschitz continuous, Hilbert  space 
methods are available to study existence and uniqueness of  solutions; see 
Ref. 10. Indeed, let ~ denote the set of  positive integers, and define D e as the 
space of all w E ~ z  such that  Ilcollr < +oo for each r ~ N, where 

[Icollr= ~ .  e -n co~ (2.3) 
h E N  k =  - - n r  

Let us remark that .(2 e is just the space of  configurations with a subex- 
ponential  growth, i.e., co C D  e if, and only if for any e > 0 we have 
lim ]COkl exp(--e Ikl) = 0 as ]kt-~ + ~ .  Our configuration space D e will be 
equipped with the uniform structure induced by the sequence IlcolIr, r E N of 
Hilbert  norms. This makes D e a complete separable metric space; 
convergence of a sequence in D e means convergence with respect to any of 
these norms. Let F(co) = (U'  (6k) -- U ' (6  k_ 1))k~ Z dbnote the right-hand side 
of  (1.1) as an element of  ~z. It is easy to see that  F:  D e - ~ D  e and for each 
r ~ ~ we have 

Ilf(co)llr ~< g ( 1  + [Icoll~), I l f ( c o ) - f ( ~ ) l [ r < ~ L  I I c o -  ~ l l r  (2.4) 

with some universal K and L. Therefore the general theory (1~ yields 
existence of  a unique solution co ( t )=  ptco for each initial configuration 
co C D e such that  co(t) is a continuous trajectory in De, co(0) = co, and each 
coordinate of  co(t) satisfies (1.1) for all t />0 .  Solutions to (1.2) will be 
represented as 6(0  = 6(Ptco), i.e., 6k(t ) = 6k(IPtco). 

The domains of  attraction of the stat ionary configurations will be 
specified in terms of the following subsets of  D e. Let w ~ ~ and 2 > 0, then 
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-O~w is defined as the set of  co ~ ~2 e satisfying (1.4). It is easy to see that  
09 C 12~w if, and only, if [[co - 0(co0, w)[[r = O(ra/2). I f  2 < 3 and u 4: w then 
.C2~ ~ 12~ = 0 .  Indeed, (1.4) and the Cauchy  inequality imply that  

L k - 1  

lira n -2 ~ ~j(co) = w (2.5) 
n --*oo k = l  j = - k  

that  is if co C -O~w and 2 < 3 then w is specified as the second Cesaro mean of 
the sequence 6~(co) of  increments. We shall show in Sect ion4 that 
P-Owt a c . O a  w for all w C I R ,  t > 0 ,  and Z > 0 .  Let us remark that  if co is a 
typical configuration of a Poisson process of  intensity 1/w then 
(09,-09 o -  nw)Z= O(n), thus co E 12~w can be expected only if 2 ~> 2. I f  
0 < Z < 2 then elements of  .(2~w exhibit a long-range order; thus they are 
closer to equilibrium than the completely r andom configurations are. 

Theorem 2.6.  Let 2 < 3; then co ~ X?aw implies t~m(Ptco) "-~ W for each 
m ~ Z  as t-~ +oo.  

This result will be proven in Section 6, where the rate of  convergence is 
also estimated. The bound we have is essentially the same as the exact rate 
for the linear approximat ion (1.5) with completely random initial 
configurations. In the proof  the condition (2.2) is not needed. 

For the convergence of the central particle the barycenter  (the mean 
spin) of  the initial configuration should be specified. What  we actually need 
is 

L lim n -2 ~ coj=z (2.7) 
n~oa k-1 j - - k  

It is easy to show that if Z < 2 and co ~ -Q~w then (1.4) implies 

L m+k 
lim n-2 ~ coj=z +mw (2.8) 
n --* oo k = l  j=m-k 

for each m C Z. The following theorem is an improved version of the 
qualitative result of  Ref. 6 in two directions. The restriction w =  0 is 
removed,  and the level of  initial fluctuations is considerably higher. 

Theorem 2.9. If  ~ < 2 and co E ~ a  w then (1.4) implies for each m C Z 
that lim(ptCO)m = z  + mw as t -~ +oo.  

The proof  of  Theorem 2.9 will be given in Section 7, where the rate of  
convergence is estimated as well. The heart  of  all proofs is a hierarchy of  
Liapunov functions introduced in Section 4. The related hierarchy of  a priori 
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bounds is used then in Sections 6 and 7 to show that (1.1) and (1.2) describe 
asymptotically negligible perturbations of (1.5), at least if the level of initial 
fluctuations is kept low enough. Some technical tools of this approach are 
summarized in Section 5. If  (2.7) is dropped but 2 < 2 then the bound on the 
rate of convergence yields a linear diffusion equation for the mean spin in the 
continuum limit (see Ref. 6). Related questions are discussed in the next 
section. 

3. RESCALING OF SPACE AND TIME 

As soon as the level of initial fluctuations has reached the critical level 
2 = 3, the perturbative approach of the proofs of local stability does not 
work any more. Namely, we obtain that solutions to (1.1) or (1.2) and to 
(1.5) diverge, i.e., if 2 >/3 then (1.1) or (1.2) cannot be considered as 
asymptotically negligible perturbations of (1.5). Nevertheless, an intuitive 
picture can be obtained if space and time are rescaled according to the rule 
x~x/h and t~t/h 2, where h > 0 goes to zero. This means that the 
macroscopic distance x and the macroscopic time t correspond to x/h and 
t/h 2 in the microscopic picture. This scaling principle admits two different 
interpretations. In the lattice approximation approach (continuum limit) Z h 
(or Wh) approximates a continuous function as h goes to zero. Here the 
lattice site k = [x/h] corresponds to the macroscopic position x E IR. In the 
point field picture W h is expected to converge to a proper limit, and not the 
label k but the actual position co k of particles should be rescaled. First we 
investigate the problem of lattice approximation; the hydrodynamical limit 
will be based on results in this direction. We are interected in the 
asymptotics of the following two processes: 

Zh(t, x, co) = (P'/h~)[~/h] (3.1) 

and 

Wh(t,  x ,  co) = Zh(t ,  x + h, ~ )  -- Zh(t ,  x ,  co) 

= ~tx/h~(Pt/h%) (3.2) 

where h > 0, t ~> 0, x E ~, 09 E ~e and [u] denotes the integer part of u C P~. 
We prefer the lattice approximation approach, it seems to be more 
straightforward in both cases than the point process picture. 

Suppose now that we are given a family/a h, 0 < h ~< 1 of probability 
measures on .O e; thus Z h and W h will be considered as stochastic processes 
with values in a space IH e of real functions defined as follows. If  u: [~ ~ ~ is 
locally integrable then 

,,ullr= [n~_a e-n ~rU2(x) dx]l/2 (3.3) 
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is well defined for r > 0; actually it is a Hilbert  norm. Analogously  to s9 e let 
JHe be the space of all locally integrable functions u: ~ -* f8 such that Ilu[[r is 
finite for each r C  N. Let us remark that the mapping c o ~ u  given by 
u(x) = COtx/h J is a natural  embedding of "Oe into [H e for each h > 0. On the 
other hand, if h > 0 and u ~ IH e then the step function uh(x) = u(h[x/h])  can 
be identified with a configuration co E ,(2 e by cok = uh(kh) = u(kh). Let iH e be 
equipped with the uniform structure induced by the sequence It. lit, r E IN of 
norms, i.e., lim u,  = u in IH e means that  we have lira Hu, - u l l r=  0 for each 
r E  N. The space of absolutely continuous u C JH e with u ' ~  IH e will be 
denoted by IH~, it is natural  to define l i m u , = u  in IHe ~ by lim l l u , - u l l r +  
Ilu n' - u'll r = 0 for each r E N. It is easy to see that both IH e and IH le are 
complete metrizable spaces. The spaces of  continuous mappings  of  [0, +oo )  
into IH e and IH ) will be denoted by C([R+, IHe) and by C ( ~ + ,  IH~), respec- 
tively. Finally, let IH~ be the set of  such u ~ IH 1 that  u '  is absolutely 
continuous and u"  C IH e, the spaces of real functions ~0: Yt ~ [~ with compact  
support and having continuous first and second derivatives will be denoted 
by C~(~)  and by C~([~), respectively. 

Now we are in a position to describe the continuum limit of  (1.1). Since 
W h converges to zero if Z h has a continuous limit as h --, 0, a linear diffusion 
equation will be obtained. 

Theorem 3.4. Let z o C IH1 and suppose that  for each r ~ N we have 

lira ( j[Zh(0 , ., co) -- Zo[[~lah(dco ) = 0 
h-~O J ~  e 

I f  U " ( O ) =  1/2 then 

( [IZh(t,., c o ) - z ( t ,  .)[12/uh(dco)= 0 sup 
O<~t<~T v O e 

holds for each T > 0 and r ~ N, where 

z ( t , x )  (2~zt) - m  (+0~ = e x p [ - - ( x - - y ) 2 / 2 t ]  Zo(y ) dy 

Theorem 3.4 will be derived from the a priori bounds of Section 4 in 
Section 8. I f  W h has a proper limit as h ~ 0 then a nonlinear diffusion 
equation is expected. The weak forms of the underlying equations are of 
fundamental  importance for understanding this limiting procedure. 

Let h 4: 0, then for functions of  a spatial variable we define the 
operators  V h, V*, and A n by 

1 
vh (x) = T Bo(x + h) - (3.5) 
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and V* = V_ h, A h = VhV*, i.e., 

1 
v~*(o(x) = ~ -  [(o(x) - ~(x - h)] (3.6) 

Ah(O(X) = h-2[(o(x  + h) + (O(x - h)  - 2(O(x)] (3.7) 

Observe now that (1.2) turns into I~ h = A  h U'(Wh), and 

h Z (o(~h)k( )=f (oh(x)W.(t,x,~)ax 
k =  - o 0  

holds with (0h(x) = (o(h[x/h]) if (O is of compact support, thus 

_ (oh(x) wh(t, x, oJ) clx = oo (o~(x) ~vh(o, x, w) ,ix 

;if + (oh(x)AhU'(Wk(s,x,w))dxds 

r + OO 

= )  ~ (oh(x) wh(o, x, ~,) dx 

;if + (AhOh(x)) U'(Wh(s,x, m)) ~x ds (3.8) 

whence the weak form 

f~oo (+oo 
~o(x) wit, x) dx = O(x) w(O, x) dx 

- - C O  ~ - - 0 0  

of ~ = (U"(w)w') '  follows for (O C C~(R) by a formal limiting procedure. 
Similarily, if Yh(t,x, oJ)=hZh(t,x,  oo) then Wh=VhYh and I~ h--  
V*U'(Vh Yh); thus for (O E C~(R) we obtain that 

f + ~ (oh(x) Yh(t' x' ~~ ) dx = ~+ ~ (oh(x) Yh(O' x' m) -co 

j+oo 
---- (Oh(X) Yh(O, X, CO) dx 

- - 0 0  

(3.1o) 
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whence the weak form of y = U"(y ' )y" ,  namely, 

- u ' ( y ' ( s , x ) ) & d s  (3.11) 

follows by a formal argument; (3.9) and (3.11) are connected by w(t, x ) =  
y' (t, x). 

Theorem 3.12. Let Y0 C IH ~ and suppose for each r ~ N that 

lim ~ rl Yh(O,., co)-Y0l[~/ah(dco)=0 
h -~0 d ~  e 

then for any r C N and T >  0 we have 

lim sup ( I1Yh(t,., co)-y(t,x)ll2rlah(d co) 
h ~ o  O<~t<~T Jg2e 

+ lim ( H Wh(t,., co) - y ' ( t ,  .)ll2/lh(dco) dt = 0 
h~O JO e 

where y E C(~+ ,  IH~) and y(t, .) C IH~ for each t/> 0. The limit y is specified 
by the property that it satisfies (3.11) with initial condition y(0, . ) =  Y0; this 
Cauchy problem has a unique solution in C(7~+, IHle). 

The proof of Theorem 3.12 will be given in Section 9. This result can be 
extended to all dimensions with a slight modification. Since our a priori 
bounds imply existence of weak derivatives only, in the multivariate case IH~ 
should be defined as the space of u ~ IH e with [He-valued weak derivatives of 
first order. 

A reformulation of Theorem 3.12 for one-dimensional point systems is 
not quite immediate, because not the positions but the indices of particles 
have been rescaled here. Suppose now that 0k(co ) > 0 1%-a.e. for each h > 0, 
and consider the rescaled counting functional 

Nh(t, 0,co)=h Z O[h(P'/h2co) ] =  0(rh(t,x, co))dx (3.13) 
k ~ Z  - c o  

provided that it makes sense. Under conditions of Theorem 3.12 we expect 
that Nh(t , ~p, co) converges to 

N(t, ~) = f_+: (o(y(t,x) dx (3.14) 
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as h ~ 0, furthermore for ~0 E C02([R) we have 

N(t,q~)=N(O,~p) + flf +~ 
- -  fX3 

x))(U'(y'(s, x)))' ax as 

o"(y(s, x)) y'(s, x) u'(y'(s, x)) ax ds 

(3.15) 

We shall show that strict monotonicity of Y0 implies that of y(t, .) for all 
t > 0; in this case let n(t, y) denote the inverse function of y(t, .), and set 
p(t, y ) =  1/y'(t, n(t, y)). In view of the definition o f p  we have 

N(t, q~) = ~o(y) p(t, y) dy (3.16) 
- -  CX3 

which suggests that the limiting density p satisfies the weak form 

N(t,~o)=N(O,~p)- q~"(y) U'(1/p(s, y ) )dyds  (3.17) 
(X3 

of r = --(U'(1/p))". To prove these assertions we need a property of local 
finiteness for the initial configuration. The condition W h > 0 plays an 
important role in the proof. 

Theorem 3.18. Suppose all conditions of Theorem 3.12 and let 
6k(W) > 0 Ph-a.s. for all k ~ Z and h > 0; moreover let 

lim sup/ah[Yh(0,--r, .) < -b ,  Yh(0, r, .) >b ]  = 1 
r ~ + o o  h > 0  

for each b > 0. If Y0 is strictly increasing then p is locally integrable, N(t, q~) 
is given by (3.16), and (3.17) holds for any r ~ C2(VR). Finally, ifq~: ~ ~ [R 
is continuous with a compact support, then for each e > 0 and T > 0 

lim sup/~n[lgh(t, ~0, .) - -g( t ,  ~o)t > e] = 0 
h- -*O t ~ T 

The hydrodynamical limit described in Theorem 3.1 8 will be derived as 
a consequence of Theorem 3.12 in Section 10. Conditions of this result are 
somewhat unusual. It has not been assumed that the expectation of 
Nh(t, ~0, 09) is finite, but we need conditions ensuring the positivity of p; cf. 
the condition of Theorem 3.12. Of course, (1.1) is strange as an evolution 
law for point systems because the interaction is attractive with an infinite 
radius, and the strength of the interaction increases with the distance of 
consecutive points. It is quite possible that if we allow dilute initial data, 
then the limiting system develops some singularities. 
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4. THE HIERARCHY OF LIAPUNOV FUNCTIONS 

Additive Liapunov functions as ~ c o  2, Y' U(ak) and Y~ [U'(6k)--  
U'(6k-1)] 2 are known to have nice contraction properties in the case of finite 
gradient systems as well as in translation invariant situations; see Refs. 1, 2, 
4, 6, and 1 1. To exploit these properties in the case of infinite systems with 
non-translation-invariant initial distributions we must control the production 
(dissipation) and the spatial flow of these extensive quantities. This program 
will be realized in the lattice picture by means of the following cut-off 
function f (x ,  r) interpreted as a smooth version of the indicator function of 
the interval [--r,r]. This cut-off is defined as follows; cf. Ref. 6. Let 
g: gl ~ (0, 1) be a continuously differentiable nonincreasing function such 
that g(u) = e  1-u if u ~> 2, g(u) = 5/2e if u ~< 1, and g is concave if u < 2. 
Notice that 0 ~<--g '(u)  <~ g(u) ~ e 1-~ and g(u) >1 g(1) e l-I~1 hold for all 
u C D. The cut-off function f :  P~ • [1, + m ) - +  (0, 1) is now defined as 

f (x ,  r) = oo g(Ix - yl/r) e - 21"l dy (4.1) 

The proofs of the a priori bounds are all based on the following elementary 
properties o f f ,  among which (4.5) is the crucial one. It is essential that r is 
bounded away from zero; that is why r > / 1  is always assumed. Since 
g(Ix - y l / r )  ~ exp(1 + l Y ] -  Ixl/r) and g(Ix - y l / r )  >t g(lYi + Ix]/r) >/g(1) 
e x p ( 1 -  l Y b -  Ixi/r), we have 

exp(-[xl/r) <, f (x ,  r) ~< 2 exp(1 - - Ix l / r )  (4.2) 

thus an easy calculation results in 

C -~ Ilu II~-<< f ( x , r )  u2(x)dx<. 12 IlUllr ~ (4.3) 

for U E IH e. L e t f '  and Vf denote the partial derivatives of f with respect to r 
and x. Since (+oo 

f ' ( x ,  r) = - - r  2 g'(lX - -y l / r ) Ix  --Yl e 21yL dy 

and 

1 ~+oo 
qVf(x, r)i ~ -- 7 J - o o  g'([x - yl/r) e -2ty' dy 

but -g ' ( u )  ~ g(u) for all u E ~,  while g'(u) = 0 if u ~< 1; consequently, 

[ V/(x, r)l ~< min [ f '  (x, r), r - i f (x ,  r)] (4.4) 
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Finally, as 

f ( x ,  r) = f + oo 
- - C O  

g(lYl/r) e -21x-'l dy 

and 

f ' ( x ,  r) = - r  -z f+co 
- - 0 0  

we obtain for any x, z E gt that 

f ( x ,  r) ~ f ( z ,  r) e 21x-zl 

thus for 0 < h ~< 1 we have 

g'(lyl/r) [y[ e -2'~ Y'dy 

and f ' ( x ,  r) <. f ' ( z ,  r) e 21x-zl 

[Vhf(x,  r)] 2 = h-2[ f (x  + h, r) - f ( x ,  012 
80 

~< - - m i n [ f ( x ,  r ) , f (x  + h, r)] m i n [ f ' ( x ,  r ) , f ' ( x  + h, r)] 
r 

(4.5) 

Now we are in a position to introduce a hierarchy P, Q, R, S of 
Liapunov functions each of which is subordinated to the previous one. Let 
u E C ( P + ,  IHe), then the following functionals are well defined for r~> 1, 
t~>0,  and h > 0; see (4.3) and (2.1). Since all statements of  Section 3 
concern the case when h goes to zero, while h = 1 in Section 2, we may  
assume that  h ~< 1. Introduce first 

1 [u(t, x + h )  - u ( t ,  x)] (4.6) vh(t, x) = Vhu(t, x) = ~ -  

and Fh(u) = V*U'(vh) ,  i.e., 

1 [U,(vh(t ,x))_ U'(vh(t, rh(u)(t, x) = T x -- h))] (4.7) 

and consider 

P(u, t, r) = f + cO 
o o  

+ o o  

Oh(u, t, r) = f 
--CO79 

Rh(u, t, r) = f+co 
- - 0 0  

Sh(u,  t, r) = f + ~ 
- - 0 0  

f (x ,  r) u2(t, x) dx (4.8) 

f (x ,  r) v~(t, x) dx (4.9) 

f (x ,  r)[Fh(u)(t, x)] 2 dx 

f (x ,  r)[VhFh(u)(t, x)] 2 dx 

(4.10) 

(4.11) 
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We are interested in the evolution of these quantities along solutions to 
z /=Fh(u) ;  then 6 h = VhFh(u ) = A  h U'(vh). Since F h satisfies ]lFh(U)l]r ~< 
ghllul lr  and IlVh(u)--Fh(a)llr<<.thllu--allr for each r C N ,  given 
u(0, .) E IHe, there is exactly one u C C(~  +, IH~) such that zi = Fh(u ). In the 
forthcoming calculations the following identities will be of fundamental 
importance. Let I" h denote the shift of a function ~0 of  a spatial variable x, 
i.e., Thq)(x ) = q)(x + h), then 

2Vh(f~0 ) = ( f  + T h f )  Vhq~ + (Vhf)(~0 + Thq~) 

and 

(4.12) 

( 
f+co 

,+ ~ fV*ep dx = - (Vhf)q) dx (4.13) 
J CO - - C O  

Proposition 4.14 .  Let u, f f~  C ( ~ + ,  IHe) be solutions to fi =Fh(U),  
and set p ( s ) =  [r 2 + M r - - M s ]  1/2 for O<.s<~t and r/> 1, where M =  160/c 
with c as in (2.1); then 

P(u - if, t, r) + c Qh(u - if, s, p(s)) as <~ P(u - 12, o, (r 2 + Mt)  '/2) 

for a l l r > ~ l  a n d r e > 0 .  

Proof. Differentiating with respect to time we obtain 

I +cO P(u -- 12, t, r) = 2 f ( x ,  r )[u( t ,x )  -- f f( t ,x)l[Fh(u ) -- Fh(a)l  dx 
_ C O  

~ 2 dx 

f+co 
= -- ( f  + Thf)(Vh -- ~h)[U'(Vh) -- U'(fh)  ] dx 

- - C O  

I +cO 
- ( v h f ) ( u  - a + L u  - L a)[u ' (vh)  - v ' ( e ~ ) ]  ax 

- - C O  

Observe now that (2.1) implies 

c(x _ y ) 2  ~ (x  - y ) [ u ' ( x )  - c r ' ( y ) l  

and 

[U,(x)- U,(y)]2 < 1--(x-y)[U'(x)- u'(y)] C 
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thus using py - qy2 <<. p2/4 q and (4.5) we obtain that 

P(u - if, t, r) + eQh(u - ~, t, r) 

1 c + ~ 1 7 6  
--47cj_oo ( V h f ) 2 ( T h f ) - ' ( U  -- ~ + Thu - -  Tha)2 dx 

40 I +~176 min [ f ' ,  T h f ' ] [ ( u  -- ~7) 2 + (Thu -- ThzT) z ] dx 
cr ~-oo 

.< 8 0  I+~  f ' ( x , r ) [ u ( x ,  t ) - f f ( t , x ) ] 2 d x  
" ~  c r  _ 

that is, 
M 

P ( u - f f ,  t , r ) + c Q h ( u - ~ , t , r ) < . ~ . r P ' ( u - ~ , t , r  ) (4.15) 

where P '  denotes the partial derivative of  P with respect to r. Therefore, if 
we let r depend on time in such a way that  f + M/2r  <. 0, then P turns to be 
a decreasing function of time, thus putting r = p ( s )  we obtain the 
statement. �9 

Contract ion properties of  Qh are somewhat  weaker. 

Proposition 4.16. Let u ~ C ( ~ + ,  IHe) be a solution of fi = Fh(u ), and 
choose a s tat ionary solution O(x)= z + wx, then 

s2 Qh(U -- O, t, r) + c Rh(U, S, fl(S)) ds <. Qh(U -- O, O, (r 2 + Mt)  l/z) 

where p, c, M are the same as in Proposit ion 4.14. 

Proof. In a similar way as above we obtain that 

Qh(u -- 0, t, r) 

2 ( + ~  = ) _ ~  f ( x ,  r)(vh(t, x)  -- w) VhFh(u ) dx 

 f+5 r 

= -  ( f  + Thf ) (Vhvh)[VhU'(vh)]dx  
- - o 0  

-- (Vh f ) (v  h + T h v h -- 2w)[V h U' (vh) ] dx 
- - o O  
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1 [+oo 2 1 
< --oRb(u, t, r) + 477. cJ_o~ (Vhf)  7 (Vh + ThVh -- 2W) 2 dx 

80 [+oo 
<~ --ORb(U, t, r) + -~r ~-~o f ' ( x ,  r)[vh(t, x)  -- w] 2 dx 

M 
= --CRh(U, t, r) + ~ Q~(u - O, t, r) 

which proves the statement. [] 

Finally, for R h we have the following. 

Proposition 4.17.  If  u ~ C ( ~ + ,  IHe) satisfies t/ = Fh(u), then 

;] Sh(U, S, p(s)) ds <. Rh(u -- O, O, (r 2 + Mt)~/2), Rh(u, t, r )  + C 

where c, p, M are as in Proposition 4.14. 

Proof. In a similar way as above we obtain that 

t~h(u, t, r) = 2 fFh(u ) V* [U"(Vh) VhFh(U)] dx 
--00 

2 (+~ = -  ) [vh(f&(u))] u"(vh) vh&(u) dx 
c o  

= - ( f  + T h f  ) U"(Vh)[VhFh(u)] 2 dx 
--o0 

= -- (Vhf )  U"(Vh)[Fh(U ) + ThFh(U)] VhFh(u ) dx 
--o0 

1 ( +~ 
-- CSh(U, t, r) 4- ~ ' e  )-oo ( V h f ) 2 ( T h f ) - I  

• [Fh(U ) + ThFh(U)] 2 dx 

consequently by (4.5), 

t~h(U, t, r) + CSh(U, t, r) <~ ~M-~T R'h(u, t, r) 
s r 

629 

which completes the proof  in the same way as above. [] 
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Since Qh(u-O,s ,p (s ) )  is a decreasing function of  s, Proposi t ion4.14 
yields 

(t + 1) Qh(u - O, t, r) 

<. 1 p ( u  - O, O, (r 2 + Mt) ~/2) + Oh(U -- O, O, (r 2 + Mt) ~/2) (4.18) 
c 

On the 
implies 

other hand, Rh(u,s,p(s)) is also decreasing and Proposi t ion4.15 

2 ( t - - s + l ) g h ( u , t , r ) ~  2 e Qh(u - O, s, p(s)) + 2R~(u, s, p(s)) 

thus integrating over 0 < s < t and adding Rh(u, t, r) < Rh(u, O,p(O)) we 
obtain 

(t + 1) 2Rh(u, t,r) 

2c-  2P(u -- O, O, (r 2 + Mt) ~/2) 

2 
+ - -  Qh(u - O, O, (r 2 + mt)  ~/2) + Rh(u, O, (r 2 + mt)  1/2) (4.19) 

c 

Let us remark that R h ~< 2(ch) -2 Qh and Qk ~ 2h-2P, thus if h > 0 is 
fixed then we have bounds for Qh and R h at t > 0 in terms of P at t = 0. The 
condition (2.2) has not been used in this section. 

5. SOME PROPERTIES OF BESSEL FUNCTIONS 

In the following two sections (1.2) and (1.1) will be rewritten as 

G 
6k(t) = ~ -  [vk-1(t) + vk+ 1(0 -- 2vk(t)] + ck(t), k E Z (5.1) 

where a =  2U"(w) and e = (ek(t))k~ z is a continuous trajectory in I2 e. If  
v(O) C I2 e then iterating the linear part  of  the right-hand side of  (5.1) we 
obtain that  

Vm(t) = 3 In(at) Vm_.(O) + 1.(Or-- GS) aS (5.2) 
n~Z  nEZ 

where 

In(t ) = ~ -  exp[t(cos x - 1)](cos nx) dx, n C Z  (5.3) 
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are the Bessel functions of first order with imaginary argument. Let us 
remark that I , ( t ) =  Prob[Xt=  n IX0 = 0] if Xt is the standard symmetric 
random walk with continuous time on Z. Since I n ~> 0 and for any s ~ ~ we 
have 

I , ( t )  e s" = exp[t(cosh s - 1)1 
n E Z  

it is easy to verify (5.2). First we summarize some elementary properties of 
I , .  It follows directly from (5.3) that I ,( t)  is a symmetric probability 
distribution for each t ) 0 ,  i.e., I , ( t )> /0  and I n ( t ) = I _ n ( t  ) for all n C Z; 
furthermore 

In(t ) = 1 (5.4) 
n E Z  

It will be very important that I n+ l ( t )~ In ( t  ) if n>~0; see (3.5) in Ref. 6. 
Thus the trigonometric identity 

2 . n  
In_l( t  ) - - In+l( t  ) = In(t ) (5.5) 

t 

implies for n ) 0 and t ) 0 that 
4n + 4 

I ,( t)  - I ,+,( t )  ~ ~ - I , ( t )  

Finally, if t >/0 and p/> 0 then for 0 ~ 2 ~< 4 we have 

oo 

~'  [(n + 1) 2 +p]a / z i , ( t )  <~ 2(1 + t +p)a/2 
n = 0  

Indeed, the second derivative of exp[t(cosh s -  1)] gives 

(5.6) 

(5.7) 

while the fourth one yields 

whence 

g ~ n2I,(t) = t 
n E Z  

n41,(t) = t + 3t 2 
n E Z  

[ (n+  1)2 +p]2In(t)  
n E Z  

= 1IS~ 
n E Z  

= 3 t  2 + 7 t +  2 p t + p  2 +2/) + 1 ~<4(1 + t + p )  2 
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whence (5.7) follows by the H61der inequality. The right-hand side of (5.2) 
will be evaluated by means of the following three lemmas. 

kemma 5.8. If0~<)l,~<3, p />0 and 

If l 4 P[n 2 + pla/2 
k =  - -n  

for n E N  then 
3@ 

In(t)(f~ --f,, 1)1 (1 + t + p)a/z 
nEZ 

Proof. Using (5.6) and 

[(n + 1) z +p]b _ in 2 +p]b ~< 2b[(n + 1) 2 +p]b-l/2 

we obtain that 

I , ( t ) ( f , - f ,  1) = ~' ( I , - / , + l ) f ,  
nEZ nEZ 

<. ~ (In--In+,)(]fn[ + If ~-,I) 
11=0 

4 o~ 
~ l+ - - t  ~--0 (n + 1)In(lL I + If- , - l l )  

4 ~ n+l 
<~-(--~ (n+ 1)(In--In+ 0 Z 

n=O k = - n - 1  

16p ~ [ ( n + l ) Z + p ] a / z I ,  

[(n + 1) 2 +p]~t/2+l/2(17 n --In+l) 

whence (5.8) follows by (5.7). �9 

kemma 5.9. If0~<2~<3, p>~0 and 

g~ <~ q2(n2 + p)a/2 
k = - - n  

for n ~ N  then 

48q t -~- p ) • /4+  1/4 In(t)(g n - g ,  ,) ~ ( 1 +  
n E Z  
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Proof. The first steps are the same as in the proof of Lemma 5.8; then 
by the Cauchy inequality we obtain 

I . ( t ) ( g . -  g. 1) 
. E Z  

~ ~ - ~  (n -t- 1)3~2(In--In+l) ~ g 
n = O  k=-n-I  

8q 
[(n + 1) 2 +p]~'/4+3/4(ln--In+l) 

~<T77 n=0 

24q 
~__ [(n + 1) 2 +p]a/4+l/4I.(t) 

~ T 7 7  .=0 

whence the statement follows by (5.7), �9 

I .emma 5.10. Suppose that CO El2aw with 0 < 2  < 3, then (2.7) 
implies that 

lim ~ I.(t)(CO. + CO._ 1) = 2z - w 
t--++ oo .EZ 

Proof. Let s.=CO . l + c o _ . + . . . + c o n _ l + c o ,  and S n = s o +  
s 1 + ... + s . ,  then by (5.5) we have 

In(t)(co. + COn_z) = Ios o + I is l  + ~ In(S. -- S._2) 
.EZ n = 2  

2 ~ ( n + l ) i ~ + l s  ~ = (In--In+2) s ~ = ~ -  n=o 
n = O  

= I1So+"-~n=x ( n + l ) I n + l ( S n - S n  2) 

2 ~ [m'..- (n + 1)I.+,] s .  1 
[ n = i  

We introduce now the abbreviation 

n 
J.(t) = t  (n + 1)[n l . ( t ) -  (n + 1)In+l(t)] (5.11) 

for n C N and t > O. It is easy to check that lim J . ( t )  = 0 as t ~  +oo for each 
n C N, and 

oo 

J.(t) = 1 (5.12) 
. = i  

822/38/3-4-14 
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for each t >/O; moreover, 

1 ~ 1 ~ n2(n + 1 ) ( I , - - I , + 1 )  IJ,(t)l ~t  n(n + 1)1,+,  + t  ,=,  
n=l n=l 

1 1 ~ 3 
<" -2 + t 2nZI'(t) = "2 (5.13) 

Therefore the summation kernel J,(t) transforms convergent sequences into 
their limit as t ~ + o o .  Consequently, it is sufficient to show that n-2S. 
converges to z - w/2 as n goes to infinity. However, 

I, 

S ,  = cog + ~. (09_j + j09) + 1)(n + 2)w 
k=0 j=-k  j=, - - y ( n  

and by the Cauchy inequality 

n+l [ n+l ] 5/2 
Io9 j+jw[<~(n+ 1) '/z ~ (09k--kw) 2 

j= l  k=--n  1 

thus (2.7) and m C -Qe ~ with )~ < 3 imply the statement. �9 

Now we are in a position to prove the local stability of stationary 
solutions. 

6. PROOF OF THEOREM 2.6 

Let us rewrite (1.2) as 

O 
[Jk(t)------~ [ak_R(t) + 6k+ l ( t ) -  26k(t)] + gk(t)-  gk-l(t) 

where o = 2U"(w) and 

g k ( t )  = U/((~k +1 ( t ) )  - -  U/ (r  - -  U tt ( w )  [~k +1 (t) --  r ] 

then (5.2) results in 

f i~ = 6~ + ~f ,~z In(at-as)[gn(S)-- gn-l(S)] ds 

where 

(Pto09)m = ~ I,(at) 09m-,, m C Z 
nEZ 

(6.1) 

(6.2) 
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denotes the solution of the associated linear approximation (1.5). Since 
]gk[<~(1/e)]6k+l--6k] in view of (2.1), (4.19) implies a bound for 
30(Ptco)-30(P~co) via Lemma 5.9. Indeed, let h =  1 and u = Z l ( t , x ,  co ). 
Since (4.3) implies that P(u - O, O, r) = O(ra), the right-hand side of (4.19) 
is bounded by a multiple of (r z + Mt)a/2; thus we have a finite q(co) such 
that 

(6k+ I(Ptco) -- 6k(Ptco)) ~ ~ q2(CO)(I + t ) -2(n  2 + Mt )  a/2 (6.3) 
k----It 

Therefore gk(S) satisfies the conditions of Lemma5.9 with q = K  1 �9 
q(co)/(1 + s) and p = as; consequently, 

f l  (1 + t) M4+1/4 
160(ptco)- o(p co)l ~<g= (1 + t - s ) ( 1  + s )  as 

2K2(1 + t) A/4-3/4 log(1 + t) (6.4) 

where K 2 depends only on co; thus we have an estimate for the rate of 
convergence in Theorem 2.6. 

Theorem 6.5. I f2~<3 and co C ~ then we have for each m ~ Z 

g3/4 -A/4 
lim sup - -  

t--.~ log t 
Igm(P'co) - wl < + o o  

Proof. Applying Lemma 5.9 to 

we obtain that 

3o(Ptco)= ~'  I .(at)(con+l--con) 
n~Z 

160(�9 -- w I ~<K3(1 + t) ~/4-3/4 (6.6) 

where K 3 depends only on co; thus we have the statement for m = 0, whence 
the general case follows directly by (6.3). �9 

Remark  6.7. If the initial distribution of points is a Poisson process 
of intensity 1/w then the second moment of 60(P~co) - w equals W2Io(2at) = 
0(t-1/2) ,  which corresponds to 2 = 2 here. 

Remark  6.& It has not been exploited in the proof that the linear 
approximation P~ is fitted at the value w of typical distances. Using (2.2) 
and a more sophisticated version of Lemma 5.9, the exponent 2/4 - 3/4 in 
(6.4) can be replaced by 2 / 2 -  3/2, i.e., (P~co) approximates 6(ptco) better 
than its limit w; cf. (6.7). 
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7. PROOF OF THEOREM 2.9 

Now we rewrite (1.1) as 

~7 
O)k(t ) = ~ -  [0) k_ ,(t) + ~Ok+ l(t) -- 2Cok(t)] + f k ( t )  -- f k - 1 ( t )  

where e = 2U"(w)  and 

f k ( t )  = U ' ( 3 k ( t ) ) -  U ' ( w ) -  U"(w) (3k( t  ) - - W )  

thus 

Fritz 

( P t ( D ) 0 = ( P t ( . o ) 0  + ~ In(Ot-(Ts)[fn(s)--fn_l(s)lds (7.1)  
nEZ 

Since [fk[ ~ C ]fi k -- wl 2 in view of (2.2), while (4.18) yields 

9 w12-< (n2 + (7.2) 
k - - n  

there exists a constant K 4 depending only on co such that  fk(s ) satisfies the 
conditions of  L e m m a  5.8 with p = K4/(1 + s) and p = as; consequently, 

t (1 + t) M2 ds ( 
I(P'~o)0- (Pt~o)01 "</q30 (1 + t--s~-I -7-s) 

2K5(1 + t) ~'/2-1 l o g ( i  + t) (7.3)  

On the other hand, Lemma  5.10 yields 

lim [(~tco)0 + (p t~o)_ l ]  = 2z - w (7.4) 
t--*c~ 

while (7.2) holds for p t ,  as well; thus compar ing (7.2), (7.3), and (7.4) we 
obtain Theorem 2.9. Conditions for the rate of  convergence should be given 
in terms of the initial configuration. 

T h e o r e m  7.5. Let ~ < 2, ~o C ~2~ and suppose (2.2) and 

I ] sup n 1-2a m~ - (2k + 1)z < +o0 
n~N k=l j -  k 

then for each m C Z we have 

t l  -~/2 
lim sup - - [ ( P t W ) m  -- z -- m w l  < +oo 

t - , .  log t 
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Proof. Let g.=co .+co . + l + . . . + c o ~ - - ( 2 n + l ) z  if n > 0 ,  while 
go  = c o o -  z ,  g _ l  = z -  coo and g .  = - g - . - i  i f  n < 0; then 

,~_ I.(at) 1 .~ z co" = T .~z ~ I.(ot)(con + co_.) 

1 
= z + T ~ I.(at)(g. - g._,) 

n E Z  

thus Lemma 5.9 yields 

l( p t co)o -- z [ ~ K6(1 q- t) a/2 - -1  

with K 6 depending only on co; thus (7.2) and 
statement. [] 

(7.6) 

(7.3) result in the 

8. PROOF OF THEOREM 3.4 

First we reformulate the Riesz criterion of  compactness in L 2 for IH e ; let 
ThU(X ) = U(X + h) be as in Section 4. 

k e m m a  8.1. Let E c  IH e and suppose for each r ~  q~ that 

and 

sup IlU!Ir < + m  
u E E  

lim sup [I u - T~u lit = 0 
&-+O u E E  

then E is precompact  in IH e. 

Proof. In view of  the Riesz criterion and the diagonal principle we can 
select a sequence u.  C E and a measurable uoo: ~ ~ ~ such that u 2 is 
locally integrable and 

if lim [u. - uoo] 2 dx = 0 (8.2) 
n - + o o  - r  

for each r C IN. On the other hand, as 

e - k / 2  dx ~< 2 IlUll2r 
k = l  

for each r @ N, we have 

oo k r  

Z e - ~ f  u2(x) dx<<-2e-m/211ull~r 
k = m  - k r  

(8.3) 
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for all m, r C  N. Comparing (8.2) and (8.3) we see that uo~ E IN e and 
lim u, = u~ in ]He, too. [] 

To derive the second condition of Lemma 8.1 from Proposition 4.14 the 
following elementary property of step functions will be needed. 

Lemma 8.4. Let 0 < h ~ < l  and 0 < e ~ l .  If uCIH e is constant on 
the intervals [mh, mh + h), m ~ N; i.e., u(x) = u(h[x/h]),  then for each r C N 
we have 

]lu-T.ull~r~e h 1 Ilu-TnuLI~r 

Proof. L e t m = [ e / h ]  a n d s = e - r o b .  S i n c e 0 ~ < s < h ,  f o r k E N  

s f kh 
kh [U(X + S) -- U(X)] 2 aX = 3 -  -kh [U(X + h) - u(x)] 2 & 

k h  

Thus from 

u(x + e) -- u(x) = u(x + e) -- u(x + mh) + u(x + m/z) 

- u ( x  + m h  - h )  + . . .  + u ( x  + h)  - u ( x )  

we obtain by the Cauchy inequality that 

~.r [U(X + ~) -- U(X)] ~ dx 
- - t i t "  

I tit 
~< (m + 1 )  [u(x + ~) - u(x + mh)] 2 dx 

- - n r  

m - 1  tir 

+ ( m + l )  • f [ u ( x + k h + h ) - u ( x + k h ) ]  2dx 
k = O  - n r  

~ ( m + l )  m +  o tit 1 

which completes the proof as e = mh + s and h ~ 1 ~< r. [] 

Define now Yh E C(P+ ,  IHe) as the unique solution of y- - -V*U'(Vhy ) 
with initial condition 

(.h + h [ x / h  ] 

yh(O,x) ='h|rxm Zo(S) ds (8.5) 
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and let z h ( t , x ) = h - l y h ( t , x ) ;  we are going to show that  the family z h, 
0 < h ~ 1 is p recompact  in C ( ~ + ,  1He). Indeed, as 

f .r s~(~ ~_,-.r 

i.e., I[yh(O, .)[[~ <<.eh 2 [[z0([~ ; choosing u = Yh and • =  0 in Proposit ion 4.16 
we obtain by (4.3) that  

f2 Jlzh(t, .)ll~ + eh -2 IIv, yh(s, .)ll2r ds ~< 72 IlZoll~ (8.7) 

where ~ =  1 + [(r z + Mt)~/2]. Similarly, 

n r  c n r +  1 2 

[V~yn(O,x)12dx<~h2J , , .~ [V~zo(x)] dx 
J - - n r  

e n r + l  ~ . x + h  

- n r -  I ~ 

h 2 (,,r+~ [Z~(X)] ~ dx (8.8) 
- - n r - - 2  

i.e., IIV~y~(O,.)ll~ ~< e 2h~ , 2. IIz011r, thus Proposit ion 4.16 yields 

Hv~zh(t, .)ll~ + e Jl~,(s, .)Ill as ~ 216 JJz;/]~ (8.9) 

where f is the same as in (8.7). Since (8.7), (8.9), and Lernma 8.4 imply the 
conditions of  L e m m a  8.1, for any T >  0 there is a compact  E r c IH~ such 
that  yh(t, .) C E r if 0 <~ t <~ T. On the other hand, as 

s f l  +~ Ilzh(t + s, .) - zh(t ,  .)ll~ 4 II~(u,  .)ll; au (8.10) 

we see that  the family zh(t, .), 0 < h ~< 1 is equicontinuous on finite intervals 
of  time, thus the Arze la-Ascol i  theorem can be applied. We obtain that  there 
exists a z E C ( ~  +, the) and a sequence h,  > 0 such that  lira h,, ~ 0 and 

lim sup [[Zh,( t , . ) --z( t , . )[[~=O (8.11) 
n ~ c x 3  O ~ t < ~ T  

�9 1 r To identify z as the weak solution to z = ~z , let (fi C C0Z(~) and set 
(fin(x) = (fi(h[x/h ]); then 
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(+co (oh(x) zh(t, X) dx 
J- -00  

~ f + O 0  
(30 

--CO 

Fritz 

(t (+ oo 1 
(oh(x) Zo(X ) dx + "o - ~ Oh(X) -h- V*U'(Vhyh(s' X)) dx ds 

(t~+co 1 , 
(oh(x) Zo(X ) dx - ' o  - ~o [Vh(oh(X)] -h  U (Vhyh(s, X)) dx ds 

+or l ( t ( + m  
= f_co (oh(X) Z~ dX + T Jo;_ 0o [Ahr ] zh(s'x) dx ds 

fs 1 + [vh (oh(x)] Ta(Vhyh(s, x)) dx ds (8.12) 

where a ( x ) = x / 2 - U ' ( x ) = O ( x  2) in view of (1.10). Therefore (8.7) and 
(8.11) imply 

+m f+co 
(o(x) z(t, x) dx = (o(x) Zo(X ) dx 

--00 --00 

l ( t (  +cO 
+ T : o ~  co ~"(x)z(s,x)axds (8.13) 

for any (O ~ Co2(~). Since (8.13) determines z C C(~+ ,  IHe) in a umque way, 
we have (8.11) for any sequence hn-~0. Finally, from (8.3) we see that 
Zh(O, .) converges to z 0 in IHe; thus using Proposition 4.14 with u = Z h and 

= z h, and taking into account that 

fn .)h~ uh(dco)-, 0 as h ~ O  (8.14) H zh(o,. ,  co) - zh(0, '~ 
e 

we obtain the statement by a direct calculation. 

9. PROOF OF THEOREM 3.12 

The main steps of the proof are essentially the same as above. Let Yh 
C( ~ + ,  IHe) be defined as the unique solution to y - - V * U ' ( V h y  ) with initial 
condition 

1 /.h[x/hl+h 
Yh (0, x) = ~ Jh[x/hl yO(S) ds (9.1) 

and put wh(t ,x )=Vhyh( t ,x  ). Since Ilyh(O,.)ll~<e[lyoll~ [cf. (8.6)], 
Proposition 4.14 yields by (4.3) 

II Yh( t, ")112 ~ 72 II Y011~ (9.2) 
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where F=l+[ ( r 2+M t ) m] .  Analogously as in (8.8) 
[I wh(0, .)1[~ ~< e2 [I Y~ Hr 2, thus Proposition 4.16 results in 

II w~(O, .)11~ § c Ir y~(s, .)1[~ as <. 216 II yol/~' 

with f as in (9.2). Finally, as 

V *  ~ 2 C - 2  II ~ u (w~(O, .))lit ~< IIV~w~(O, .)ll~ 
4 (e /c)  2 , , 2 I1% yollr ~ (e2/c2) 2 I/yg IIr 2 

it follows 

and 

IlVhwh( t, .)ll~ ~ e Ir V*wh(t, .)ll2r ~< 2ec-2Rh(Yh, t, r) 

Proposition 4.17 and (4.3) imply 

Ir%wh(t ,  2 1 ' �9 )41r + e--cfo Ilwh(s' .)H~ ds ~ 72(e/c) 4 ]1 " 12 Y0 

with f as above. Therefore, taking into account 
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that 

(9.3) 

(9.4) 

Jr Yh(t § ~, .) --y~(t, ")lt~ 4 C [~+ ~11 yh(s, .)llr ~ as ~t (9.5) 

I+co f+co 
~o'(x)y(t, x)  ax = - o(x)  w(t, x)  clx 

- - 0 0  - - C O  

(9.7) 

is an identity, we have 

f+co f+co ( vyo(x ) )y~( t ,  x)  ax = - o(x)  w~(t, x) dx 
- - 0 0  - - 0 0  

uniformly in finite intervals of time. Since 

lim [Hymn(t, . ) -v ( t ,  .)L + [I whn(t, . ) - w ( t ,  .)llr] = 0  (9.6) n 

and the analogous inequality for wh, by Lemma 8.4 and Lemma 8.1 we 
obtain that both families Yh and w h, 0 < h ~ 1 are precompact  in C(R +, He), 
i.e., we can select a sequence h n > 0 and y, w C C(N +,  [He) such that h n-~ 0 
and for any r C N we have 



6 4 2  Fritz 

for ~0 E C~(~), consequently y(t, .) is absolutely continuous and y'(t, x) = 
w(t, x), i.e., y E C ( ~ + ,  IH~). Thus from (9.6) we obtain that y and w satisfy 
(2.11) and (2.9) for ~0 ~ C1(I~) and for ~0 C C~(E), respectively. From (9.4) 
by Lemma 8.4 the weak differentiability of w(t, .) follows for all t > 0, thus 
we have y(t, . )E  IH~, too. 

The next step is to prove uniqueness of the Cauchy problem for (3.11) 
in the class C ( ~ + ,  IH~). Observe that (3.11) extends to functions ~0(x)-- 
f ( x ,  r) u(x) if u C IH 1 and f denotes the cut-off function of Section 4. 
Therefore, if 6 > 0, 

f f (x ,  r) u(x)[y(t + 6, x) - y ( t ,  x)] dx 

ftt+ ef = -- [(Vf(x, r)) u(x) + f (x ,  r) u'(x)] U'(w(s, x)) dx as 

(9.8) 

where w(t, x) = y'(t, x). Since IvY I ~ f ,  choosing u(x) = y(t + 6, x) - y(t, x) 
an easy calculation yields 

Jly(t + e, .) - y(t, .)lit 2 

f t t+ <, cl l lY(t  +6,.)--Y(t, .)l lr IIw(s,.)llrds 

fl §176 + C1 II w(t + 6, .) - w(t, ")lit II W(S, ")Hr ds (9.9) 

Suppose now that y C  C ( ~ + ,  IH~) is another weak solution with 37(0,.)= 
y(0, .), and let v = y - y ,  w = )7', t k = tk/m, then 

f f ( x ,  r) v2(t, x) dx 

m 1 
= - 3 ~ ff( , r)[v(tk+l, x) -- v(t k, x)] 2 dx 

k=O 
m-1 

+ 2 ~ ~ f ( x ,  r) v(tk+l, x)[v(tk+l, x) - -  v(tk, X)] dx 
k=O 

(9.10) 

is an identity. In view of (9.9), v has a vanishing quadratic variation, as a 
trajectory in IHe, thus putting B(s, x) = U'(w(s, x)) -- U'(#(s, x)) and letting 
m ~ + m  we obtain that 
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f ( x ,  r) v2(t, x) dx 

= -  2 Ii~ (Vf(x, r) ) v(s,x) B(s ,x)  dx ds 

- -2  f ( x , r )  v ' ( s , x ) B ( s , x ) d x d s  

/i/ <<.2 f . ~ . B dx da - 2C j o f f . B2 dx ds 

1 t 
~ ~-~. c l; ~ f (x ,  r) v2(s,x) dx ds 

whence y = 37 follows by the Gronwall  lemma. 
Now we are in a position to complete the proof  of  Theorem 3.12. Since 

yh(0, .) converges to Y0 in IH e as h goes to zero, we have 

lira ( [I Yh( O, ., CO) --Yh( O, ")[[2 r = 0 
h ~ O  Jg/ e 

for each r E  ~J, furthermore (9.6) holds for any sequence h~-~O, thus 
Proposit ion 4.14 implies the last assertion we have to prove. 

10. PROOF OF THEOREM 3.18 

First we show that the additional conditions of  Theorem 3.18 hold for 
all t > 0. For this purpose we need a lower a priori bound for the distance of 
particles. Consider 

gh(t, o, co) = -~  ~,(x) wh(t, x, co) dx (10.1) 

and suppose that q~ C C~(N) is nonnegative and 

Asg(X ) >~ -K~o(x) for 0 < s ~ h (10.2) 

with some K > 0, then 

J~(t, o, co) = -o0 ~o(x) ~ u ' ( w ~ ( t ,  x ,  co)) d x  

~ +oo K 
= [Ah ~o(X)] U'(Wh(t,x, co))dx>l----Jh(t,~p, co) 

- - c o  C 
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as Wh >/O; consequently, 

Sh(t, ~p, ~o) >/Jh(O, ~0, CO) exp(--Kt/c) (10.3) 

Letting h go to zero in (10.3) we see that  y(t, .) is strictly increasing i f y  0 is 
so. Indeed, if y(t, a) = y(t, b) then w(t, x) = 0 for a < x < b, thus choosing ~0 
such that (10.2) holds with some h > 0, and O(x) = 0 if x < a or x > b, the 
contradiction Yo(a) = Yo(b) is obtained. Therefore p(t, x) is well defined. 

Of  course, strict monotonici ty  of  y(t,  .) does not exclude y'(t,  x ) =  0 on 
a nowhere dense set, i.e., p(t, y)  = +c~ is possible. We show, however, that 
p(t, .) is locally integrable; consequently N(t, ~p) is well defined. First we have 
to extend the additional condition of Theorem 3.18 to positive values of  time. 
To prove 

lira sup sup/2n[Yh(t, --r, .) < --b, Yh(t, r, .) > b] = 1 (10.4) 
r--*c~ h > O  t<~T 

observe that (10.3) implies 

lim sup sup gh[Yh(t, r, .) -- Yh(t, 0, .) > b] = 1 (10.5) 
r - * ~  h > 0  t < T  

and the tail of  Yh(t, 0, .) -- Yh(t, --r, .) can be estimated in the same way. On 
the other hand, as Yh increases with x, we have 

o Yh( t, x, a~) dx <~ Yh(t, O, 09) <~ Yh(t, x, co) dx (10.6) 
1 

thus (10.5) and Proposit ion 4.14 imply (10.4). Consequently,  for any 
~p: ~ ~ ~ with a compact  support  we have 

lim supflh [ f o (Yh ( t , x , . ) dx4=O]=O 
r ~ + ~  h > O  I x l > r  

while Theorem 3.12 yields 

limh_~o/2h [f~r Iq~(Yh(t 'x ' ' )--~o(Y(t 'X))ldx> e] = 0  

for each r > 0, e > 0 and uniformly continuous q~. This means that Nk(t, ~p, .) 
and N(t, ~o) are well defined, and Nh(t, ~p, .) ~ N(t, ~o) in probabil i ty as h ~ 0. 
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